Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems

نویسندگان

چکیده

There is a growing consensus that solutions to complex science and engineering problems require novel methodologies are able integrate traditional physics-based modeling approaches with state-of-the-art machine learning (ML) techniques. This article provides structured overview of such Application-centric objective areas for which these have been applied summarized, then classes used construct physics-guided ML models hybrid physics-ML frameworks described. We provide taxonomy existing techniques, uncovers knowledge gaps potential crossovers methods between disciplines can serve as ideas future research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating machine learning with knowledge-based systems

Computational learning systems attempt to improve performance with experience, according to some pre-de ned performance dimensions. Many such systems induce rule sets that function as simple knowledge bases (e.g., Quinlan, 1986). Simon (1983) argued that learning can be more e cient than programming for large knowledge-based systems. Thus, hybrid systems involving large knowledge bases may pro ...

متن کامل

Integrating Models of Knowledge and Machine Learning

We propose a theoretical framework allowing a real integration of Machine Learning and Knowledge acquisition. This article shows that the input of a Machine Learning system can be mapped to the model of expertise as it is used in KADS methodology. The notion of learning bias will play a central role. We shall see that parts of it can be identified to what people are used to call the inference a...

متن کامل

Techniques for integrating machine learning with knowledge acquisition

Knowledge acquisition is frequently cited as the greatest bottleneck in the development of expert systems. Two primary approaches to knowledge acquisition are elicitation of knowledge from experts (traditional knowledge acquisition) and machine learning. Both approaches have strengths and weaknesses. Experts can draw upon practical experience and both domain specific and general knowledge. In a...

متن کامل

Practical Machine Learning for Software Engineering and Knowledge Engineering

Machine learning is practical for software engineering problems, even in datastarved domains. When data is scarce, knowledge can be farmed from seeds; i.e. minimal and partial descriptions of a domain. These seeds can be grown into large datasets via Monte Carlo simulations. The datasets can then be harvested using machine learning techniques. Examples of this knowledge farming approach, and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Computing Surveys

سال: 2022

ISSN: ['0360-0300', '1557-7341']

DOI: https://doi.org/10.1145/3514228